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Abstract A new analytical expression for the sutface tension of a planar liquid-vapour interface 
is obtained. It is based on Ihe Fowler approximation and the sratistical-mechanical perturbation 
appmach in the theory of liquids. ?he expression obtained is explicit in the equilibrium liquid 
density. Theoretical predictions are shown to be mnsistent with the results of Monte Carlo and 
moleculardynamics simulations of the Lennard-Jones fluid. 

1. Introduction 

In 1949 Kirkwood and Buff [l] derived (on the basis of the microscopic pressure tensor 
consideration) an exact expression for the surface tension y of a planar liquid-vapour 
interface in a system of painvise interacting particles (for a review see also [2]): 

Here u(r1z) is a pair interaction potential of molecules situated at points PI and r z  of the 
inhomogeneous liquid-vapour system, ‘ = a/&,,, inhomogeneity is assumed to be along 
the z direction; p @ ) ( q ,  T Z :  p( l ) )  = p(z)(rlz, 21, ZZ; p(’))  is a pair distribution function of the 
system: p(’) is its number density. Application of equation (1) for the calculation of surface 
tension requires the knowledge of p(’) and p(’). Unfortunately, no practicable and exact 
routes exist to determine these functions in the interfacial domain from the knowledge of 
u(r) only. 

Further progress can be achieved in several ways. The first possibility is to perform a 
direct Monte Carlo or molecular-dynamics simulation [ M I .  For this purpose equation (1) 
can be expressed as 

where the summation is taken over all pairs of molecules in a sample of area A, and the angle 
brackets denote an average over simulation. Another approach consists in determination 
of p ( l )  and p(2) by an iterative procedure using the Yvon-Born-Green hierarchy or the 
Ornstein-Zemike equation with various approximations (see e.g. 171). Serious progress 
in the statistical theory of liquids during the last two decades has been achieved due to 

0953-8984/94/112207+08$19.50 Q 1994 IOP Publishing Ltd 2207 



2208 

implementation of the perturbation theory in which the attractive part of the interaction 
potential is treated as a perturbation in the reference system described hy the repulsive part 
of the potential (for a review see [SI). Its extension to liquid-vapour problems was made 
by Toxvaerd [9] and later on developed by Lee er a1 [lo]. In 1979 Evans [ l l ]  extended 
the ideas of the modem density-functional theory (DFT) to the problem of the liquid-vapour 
interface. Recently Zeng and Oxtoby [ 121 have calculated the surface tension of a Lennard- 
Jones fluid using the DFT formalism in combination with the perturbation theory. 

All the abovementioned approaches-direct numerical simulation of y by means of 
the Monte Carlo or molecular-dynamics technique, calculation of the density profile and 
distribution functions by means of iterative procedures-require a considerable amount of 
computational work. It is the aim of the present paper to propose a simple analytical model 
for the surface tension, which could give qualitatively reasonable results within the range 
of its validity. This range is limited by the condition that the temperature should not be too 
close to the critical temperature Tc. The model is formulated in section 2. In section 3 our 
results for the surface tension are compared with the Monte Carlo and molecular-dynamics 
data and with the results of the DFT calculations for Lennard-Jones fluids. 

V I  Kalikmnov and G C J Hofmans 

2. Model 

We assume that the liquid-vapour system has a temperature T not too close to Tw Then 
an important simplification of the problem can be achieved if we shrink the physical 
liquid-vapour transition zone to a mathematical surface of a density discontinuity. The 
density profile p ( ' )  = p(z) becomes a step-function: p(z) = p~ in the liquid phase and 
p(z) = pv 'v 0 in the vapour phase. This approximation, first proposed by Fowler [13], 
is valid provided that the equilibrium bulk vapour density pv(T) is negligible compared 
to the equilibrium bulk liquid density ~ L ( T ) .  In this approximation p(') is represented in 
the form p(2)(rlz,zl, z2; p"') = p(zI)p(zz)g(rIz; p )  where g(r12; p )  is the pair correlation 
function in the bulk. Then equation (1) is converted to [2]: 

where g(r; p ~ )  is a pair correlation function of a homogeneous liquid with the density p ~ .  
The function g(r; a) can be determined experimentally hy x-ray or neutron diffraction or 
numerically with the help of Monte Carlo or molecular dynamics simulations. 

A further analytical calculation of y ,  in order to be quantitatively reliable, should take 
into account a strong density dependence of the correlation function. We write g in the 
form g ( r ;  p ~ )  = e-@"(')y(r; p') introducing a cavity function y(r; a); = l / k T ,  k is the 
Boltzmann constant. Then equation(3) can be written as 

(4) 
iT 

Y = - ~ / J Z [ A I ( C  + A d T ,  &)I 

where 

A , ( T )  = Jdcodrr4u'(r)e-Pu(r) 

A2(T,  a) = Jd drr4u'(r)e-8u(')[y(r; p ~ )  - 11. 
m 
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Introducing the Mayer function f(r) = exp[-Pu(r)l- 1 and using its asymptote at r + 00 

we obtain 

m 
Al(T) = 4 k T i  drf(r)r3 (7) 

AdT,  PL) = -kT drf'(r)r4[y(r: PL) - 11. (8) im 
Note that Az is comparable with A,  in view of the Fowler approximation, in which p~ 

cannot be considered a small parameter. 
We evaluate A2 with the help of a statistical-mechanical perturbation approach based 

on the Weeks-Chandler-Andersen (WCA) decomposition [ 141 of the interaction potential: 
u(r)  = U&) + u1(r), where 

[ ;(r) + E  for r < rm 
for r > r,,, = 

(9) 

E > 0 is the depth of the potential and r, its minimum position: u(r,) = - E .  The main 
idea of the perturbation approach in the theory of liquids [SI, which dates back to van der 
Waals, is that the structure of a dense fluid is determined primarily by the repulsive part 
of the interaction potential (U&) in the WCA theory). The attractive part, U,(?'), provides 
a uniform background potential in which molecules move. Therefore attractive forces are 
treated as a perturbation in the reference system with the repulsive potential ug(r). 

rm 
, 

Figure 1. The derivative f ' ( r )  of the Mayer function and the cavity function y ( r )  for the 
interaction potential u(r) .  
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In the region r 4 r, the function f'(r) has a sharp positive peak and the cavity 
function y(r; a) monotonically decreases 1141. In the region r > r,, f'(r) is negative and 
asymptotically tends to zero, whereas [yo;  a) - 11 oscillates about zero (figure 1). In view 
of these oscilllations we can set the upper l i t  of the integal in equation (8) equal to r,. 
For r < r,, f'(r) = &(r) exp(@e), where fo(r) = exp[-@uo(r)] - 1 is the Mayer function 
corresponding to the reference interaction. In the framework of the perturbation approach 
we expand f'(r) N fi(r)(l +,¶E).  In the same domain r r, one can replace the function 
y(r; a) by its repulsive part yo@: a) = ep'o(r)go(r; a) (gO(r; p ~ )  is the reference system 
correlation function) because y(r; a) and y&; a) are quite similar [15]. Thus A2 can be 
approximated as 

A$, a) = -kT drf;(r)(l+ B+'[y(r; a) - I]. (10) L" 
In order to evaluate the integral on the right-hand si& we follow the arguments of Song 
and Mason (SM) 1161 who have recently used similar considerations to obtain an analytical 
representation of the compressibility equation for liquids explicit in density. Function &(r) 
has a sharp peak at some ro < r,, therefore the major contribution to the integral in 
equation (10) originates from the vicinity of ro. where yo behaves to first order as a straight 
line: 

with a negative slope (dyo/dr)R; R is a point near ro. Substitution of this expansion into 
equation (10) gives 

Az -kT(Jo + J+ + J- f . . .) (12) 

where 

J- = r$)R [ drfA(r)r4(r - R). (15) 

At intermediate to high temperatures the integrals J+ and J- are negligible compared to Jo. 
At low temperatures they tend to compensate each other: J+ is positive and J- is negative 
for all temperatures. So 

Physically, function yo@; a) gives the correlations that exist in the reference system beyond 
the range of the reference interadon U&). yo(r) is a more slowly varying function of r 
than goo). Since the reference interaction is harshly repulsive, yo is fairly insensitive to any 
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particular form of the repulsive potential and therefore can be approximated by the similar 
function appropriate to a hard-sphere system of some effective diameter d [14]: 

Yo(R; PL) Y Yd(& PL) = &'d(d+; PL) (17) 

where gd(d+; p ~ )  = lim,,d+og(r; p ~ )  is the hard-sphere correlation function at contact. 
For gd(d+; a) we use the CarnahanStarling formula [ 171 which is known to give accurate 
results up to the freezing density; 

where +d = ( z / 6 ) d 3 p ~  is the hard-sphere packing fraction. Substitution of equations (7), 
(16) and (17) into equation (4) gives the final analytical expression for the surface tension, 
which is explicit in density; 

This result should be completed by the equation of state for determination of &(T) 
and by the algorithm of determination of the effective hard-sphere diameter d. A 
perturbation technique similar to that described above can be applied to the Compressibility 
equation resulting in the SM equation of state [16] 

(20) _-  - 1 + Bzp 4- cupkd(d+; PL) - 11 
pk  T 

where p is the pressure, p the number density, 

B2(T) = 2x drrZ[ l  -e-~'(')] Jdm 
the second virial coefficient of the original system and 

rm 
u(T)  = 2n dr r2[  1 - e-8u0(')] 

the second virial coefficient of the reference system. The equilibrium liquid density can be 
found from equation (20) by imposing the conditions of phase equilibrium: p(&, T )  = 
p(m, T), p(pL, T) = p(pv. T) ( p  is a chemical potential). In view of the Fowler 
appoximation we can treat the vapour phase as an ideal gas with a vanishingly small 
density. Therefore pL(T) becomes a solution of the fourth-order algebraic equation 

(Y(T)pLkd(d+; PL) - 11 = -Bz(T)PL - 1. (23) 

The choice of an effective hard-sphere diameter d represents a separate problem. In the 
WCA theory d is found by equating the compressibility of the reference system to that of 
the hard spheres. It depends on temperature and density and is calculated by iteration using 
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the Percus-Yevick approximation for a hard-sphere fluid. In the Barker and Henderson 
theory [8] d is a function of T only and is given by a closed form analytical expression: 
d = JTdr[l - exp(-puo)]. For the case of a Lennard-Jones fluid Lu et al [I81 found an 
algebraic approximation for the Barker-Henderson diameter by fitting to the Monte Carlo 
simulations of the Lennard-Jones coexistence curve [19], [ZO]: 

V I  Kalikmanov and G C J Hofmans 

U 
a l T + b  
a2T + a3 

d ( T )  = 

where al = 0.56165k/c, a2 = 0.60899kf6, a3 = 0.92868 and b = 0.9718; U is a 
'molecular diameter' in the Lennard-Jones potential. 

An alternative general expression for d ( T ) ,  which describes correctly the low- and 
high-temperature limits and behaves smoothly in between, was proposed by SM: 

d 3 ( T )  = 3 [ d r r Z [ 1  - (1 +pu~(r ) ) e -~"o( ' ' ] .  (25) 

3. Results and discussion 

We calculate the surface tension (equation (19) with p~ given by equation (23)) for the 
Lennard-Jones system with the potential u(r )  = u u ( r )  = 4 ~ [ ( u / r ) ' ~  - ( ~ / r ) ~ ] .  In Bgure 2 
the reduced surface tension y u Z / e  is shown as a function of reduced temperature kTIc. Tko 
curves-the solid one and the dashed one-correspond to the two different algorithms for 
d ( T ) :  equation (24) and equation (25). respectively. Also shown in figure 2 are the results 
of direct Monte Carlo and molecular dynamics simulations of surface tension by Chapela 
et al [3], Miyazaki et al [4], Salomons and Mareschal [5], and Holcomb et al [6]. In the 
computer simulations the Lennard-Jones potential was truncated at some distance r,. The 
surface tension calculated for the truncated potential was extrapolated to the full potential 
value using a tail correction. In figure 2 the results taking into account tail corrections 
are shown. From the results displayed one can see that the simulation data are situated 
somewhat lower than the theoretical curves. The reason for this is that even when the 
tail correction is used one obtains underestimated values of surface tension, as analysed by 
Holcomb et al [6]. 

In order to evaluate how our model works in comparison with more sophisticated 
theories, we refer to the results of recent calculations of Zeng and Oxtoby 1121 based on 
the DFT. In the approach of [12] the grand potential functional Q[,3 of an unknown density 
profile of the inhomogeneous liquid-vapour system is related to the intrinsic Helmholtz 
free-energy functional. Using the WCA decomposition of the interaction potential equation 
(10). the local-density approximation for the free energy of the reference system, and the 
random-phase approximation for the perturbation of the free energy, the equilibrium density 
profile p ( r )  is found from the variational condition 6Q/6j?(r)lp(,) = 0. The integral 
equation for p(z) is then solved by iteration; the surface tension of the planar interface 
is found from the relation y = (a lp]  + p V ) / A .  where p is the equilibrium (saturation) 
pressure at temperature T ,  V is the volume of the system and A the interfacial area; Q [ p ]  
is evaluated at the equilibrium density profile p ( z ) .  

The results of these calculations [I21 are shown in figure 2 by the dashed-dotted line. 
One can see that they are close to the predictions of our theory (solid line) when the same 
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Figure 2. The surface tension of a Lennard-Jones fluid solid line, d(T) calculated from 
equation (24): dashed line, d(T) calculated boom equation (25); dashed-dotted line, density- 
functional results of Zeng and Oxtoby [IZ]; hiangles, moleculardynamics results oFChapela et 
al [31; asterisks, molecular-dynamics results of Holcomb et a1 [61: square, Monte Carlo result 
of Miyaraki et d [4]: diamonds, Monte Carlo results of Salomons and Mareschal [SI: circles. 
Monte Carlo results of Chapela et of [3]. 

expression for the effective hard-sphere diameter (equation (24)) is chosen in both theories. 
Note that the theory presented is of the mean-field type and therefore all fluctuations, such 
as capillary waves, are entirely suppressed [2 ] .  

In conclusion, a new analytical expression for the surface tension of a planar liquid- 
vapour interface is obtained. It is based on the Fowler approximation and statistical- 
mechanical perturbation approach in the theory of liquids. The expression obtained is 
explicit in the equilibrium liquid density. It is this feature that is responsible for a good 
agreement of our theoretical predictions with the results of Monte Carlo and molecular- 
dynamics simulations and with the DFT calculations of the Lennard-Jones fluid. 
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